Multilingual Neural Machine Translation (MNMT) models leverage many language pairs during training to improve translation quality for low-resource languages by transferring knowledge from high-resource languages. We study the quality of a domain-adapted MNMT model in the medical domain for English-Romanian with automatic metrics and a human error typology annotation which includes terminology-specific error categories. We compare the out-of-domain MNMT with the in-domain adapted MNMT. The in-domain MNMT model outperforms the out-of-domain MNMT in all measured automatic metrics and produces fewer terminology errors.
翻译:多语言神经机器翻译模型(MNMT)在培训期间利用多种语文对口,通过从高资源语言传授知识,提高低资源语言的翻译质量。我们研究了英语-罗马尼亚人医疗领域经域改编的MNMT模型的质量,该模型有自动计量和人类错误类型说明,其中包括特定术语错误类别。我们比较了外部MNMT和内部改编的MNMT。在计量的所有自动计量计量指标中,MNMT模型优于外门的MNMT,并产生较少的术语错误。