Understanding design decisions in relation to the future occupants of a building is a crucial part of good design. However, limitations in tools and expertise hinder meaningful human-centric decisions during the design process. In this paper, a novel Spatial Human Accessibility graph for Planning and Environment Analysis (SHAPE) is introduced that brings together the technical challenges of discrete representations of digital models, with human-based metrics for evaluating the environment. SHAPE: does not need labeled geometry as input, works with multi-level buildings, captures surface variations (e.g., slopes in a terrain), and can be used with existing graph theory (e.g., gravity, centrality) techniques. SHAPE uses ray-casting to perform a search, generating a dense graph of all accessible locations within the environment and storing the type of travel required in a graph (e.g., up a slope, down a step). The ability to simultaneously evaluate and plan paths from multiple human factors is shown to work on digital models across room, building, and topography scales. The results enable designers and planners to evaluate options of the built environment in new ways, and at higher fidelity, that will lead to more human-friendly and accessible environments.


翻译:与建筑物未来占用者有关的理解设计决定是良好设计的关键部分,但工具和专门知识方面的局限性妨碍了设计过程中有意义的以人为中心的决定。本文介绍了一个新的空间人类无障碍图(SHAPE)用于规划和环境分析(SHAPE),其中汇集了数字模型离散表述的技术挑战,以及用于评价环境的基于人类的衡量尺度。SHAPE:不需要用标签几何作为输入,与多层建筑合作,捕捉地表变化(例如地形中的斜坡),并可用现有的图表理论(例如重力、中心点)技术加以使用。SHAPE使用光谱来进行搜索,生成关于环境中所有无障碍地点的密集图表,并储存图中所要求的旅行类型(例如,向上斜坡,向下一步),同时评价和规划来自多种人类因素的道路的能力显示为跨房间、建筑和地形尺度数字模型的工作。这些结果使设计者和规划者能够以新的方式和在更友好的环境下评估建筑环境的各种选择。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员