This paper introduces a sensing-centric joint communication and millimeter-wave radar paradigm to facilitate collaboration among intelligent vehicles. We first propose a chirp waveform-based delay-Doppler quadrature amplitude modulation (DD-QAM) that modulates data across delay, Doppler, and amplitude dimensions. Building upon this modulation scheme, we derive its achievable rate to quantify the communication performance. We then introduce an extended Kalman filter-based scheme for four-dimensional (4D) parameter estimation in dynamic environments, enabling the active vehicles to accurately estimate orientation and tangential-velocity beyond traditional 4D radar systems. Furthermore, in terms of communication, we propose a dual-compensation-based demodulation and tracking scheme that allows the passive vehicles to effectively demodulate data without compromising their sensing functions. Simulation results underscore the feasibility and superior performance of our proposed methods, marking a significant advancement in the field of autonomous vehicles. Simulation codes are provided to reproduce the results in this paper: \href{https://github.com/LiZhuoRan0/2026-IEEE-TWC-ChirpDelayDopplerModulationISAC}{https://github.com/LiZhuoRan0}.
翻译:本文提出一种以感知为中心的通信与毫米波雷达一体化范式,以促进智能车辆间的协同。我们首先提出一种基于啁啾波形的时延多普勒正交幅度调制方法,可在时延、多普勒和幅度三个维度上调制数据。基于该调制方案,我们推导了其可达速率以量化通信性能。随后,我们提出一种基于扩展卡尔曼滤波的动态环境四维参数估计方案,使主动车辆能够超越传统四维雷达系统,精确估计目标方位与切向速度。此外,在通信方面,我们提出一种基于双重补偿的解调与跟踪方案,使被动车辆能够在保持感知功能的同时有效解调数据。仿真结果验证了所提方法的可行性与优越性能,标志着自动驾驶领域的重要进展。本文仿真代码已开源以供复现结果:\href{https://github.com/LiZhuoRan0/2026-IEEE-TWC-ChirpDelayDopplerModulationISAC}{https://github.com/LiZhuoRan0}。