The discrete element method (DEM) is providing a new modeling approach for describing sea ice dynamics. It exploits particle-based methods to characterize the physical quantities of each sea ice floe along its trajectory under Lagrangian coordinates. One major challenge in applying the DEM models is the heavy computational cost when the number of the floes becomes large. In this paper, an efficient Lagrangian parameterization algorithm is developed, which aims at reducing the computational cost of simulating the DEM models while preserving the key features of the sea ice. The new parameterization takes advantage of a small number of artificial ice floes, named the superfloes, to effectively approximate a considerable number of the floes, where the parameterization scheme satisfies several important physics constraints. The physics constraints guarantee the superfloe parameterized system will have similar short-term dynamical behavior as the full system. These constraints also allow the superfloe parameterized system to accurately quantify the long-range uncertainty, especially the non-Gaussian statistical features, of the full system. In addition, the superfloe parameterization facilitates a systematic noise inflation strategy that significantly advances an ensemble based data assimilation algorithm for recovering the unobserved ocean field underneath the sea ice. Such a new noise inflation method avoids ad hoc tunings as in many traditional algorithms and is computationally extremely efficient. Numerical experiments based on an idealized DEM model with multiscale features illustrate the success of the superfloe parameterization in quantifying the uncertainty and assimilating both the sea ice and the associated ocean field.


翻译:离散元素法(DEM)为描述海冰动态提供了一种新的模型化方法。它利用粒子法在Lagrangian坐标坐标下对每个海冰流的物理量进行定性,在轨迹轨迹上对每个海冰流的物理量进行定性。在应用DEM模型方面的一个主要挑战是当浮线数量大时计算成本过大。在本文中,开发了高效的Lagrangian参数化算法,目的是降低模拟DEM模型的计算成本,同时保留海冰的关键特征。新的参数化利用了少量人工冰流(称为超级浮冰)来有效地估计相当数量的浮冰流,使参数化方案满足了一些重要的物理限制。物理限制保证了超级浮冰参数化系统将具有与整个系统类似的短期动态行为。这些限制也使得超浮度参数化系统能够准确量化长期不确定性的计算成本,特别是非Gausian统计特征。此外,超级浮化参数化有助于系统系统的系统系统化的系统化的系统化模型化、称为超浮浮化的浮化不确定度通货膨胀战略,其中的参数化方法将满足了相当数量的浮质的浮质的浮化特性,从而大大地推进了以海洋为模型化的海洋模型化的模型化的模型化的模型化模型化的模型化的海洋模型化,从而在海上的模型化的模型化的模型化的海洋的模型化,从而在海洋的模型化化的模型化的模型化的模型化,从而在海洋的模型中,从而避免了海洋的模型化,从而恢复了以恢复了以恢复了以新的的模型化。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
31+阅读 · 2021年6月12日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
6+阅读 · 2017年11月27日
Arxiv
0+阅读 · 2021年7月17日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
6+阅读 · 2017年11月27日
Top
微信扫码咨询专知VIP会员