Hawkes processes are a popular means of modeling the event times of self-exciting phenomena, such as earthquake strikes or tweets on a topical subject. Classically, these models are fit to historical event time data via likelihood maximization. However, in many scenarios, the exact times of historical events are not recorded for either privacy (e.g., patient admittance to hospitals) or technical limitations (e.g., most transport data records the volume of vehicles passing loop detectors but not the individual times). The interval-censored setting denotes when only the aggregate counts of events at specific time intervals are observed. Fitting the parameters of interval-censored Hawkes processes requires designing new training objectives that do not rely on the exact event times. In this paper, we propose a model to estimate the parameters of a Hawkes process in interval-censored settings. Our model builds upon the existing Hawkes Intensity Process (HIP) of in several important directions. First, we observe that while HIP is formulated in terms of expected intensities, it is more natural to work instead with expected counts; further, one can express the latter as the solution to an integral equation closely related to the defining equation of HIP. Second, we show how a non-homogeneous Poisson approximation to the Hawkes process admits a tractable likelihood in the interval-censored setting; this approximation recovers the original HIP objective as a special case, and allows for the use of a broader class of Bregman divergences as loss function. Third, we explicate how to compute a tighter approximation to the ground truth in the likelihood. Finally, we show how our model can incorporate information about varying interval lengths. Experiments on synthetic and real-world data confirm our HIPPer model outperforms HIP and several other baselines on the task of interval-censored inference.
翻译:霍克斯进程是模拟自我振荡现象事件时间的流行手段,例如地震打击或对某个主题主题的推文等。 典型地说, 这些模型适合历史事件时间数据, 可能最大化。 但是, 在许多假设中, 历史事件的确切时间既不记录在隐私( 病人入院) 或技术限制( 例如, 大多数运输数据记录了车辆通过循环探测器的数量, 而不是单个时间) 上。 间歇审查的设置表示在特定时间间隔中只观察到事件的总数字时, 这些间隔时间间隔的设定表示在特定时间间隔中, 符合定期审查的霍克斯进程的参数, 需要设计不依赖确切事件时间的新的培训目标。 但是, 在本文中, 我们提出一个模型来估计鹰进程在间歇性模型环境中的参数。 我们的模型建立在几个重要时间间隔模型( Hawkeys Intencitional Process) 。 我们观察到, 不同时间段的周期间断是预估值, 它更自然地表示工作, 而不是在预期的数值中, ; 一种更精确的更精确的直径直径, 显示我们的一个直径直方的直方值 的直方程式与直方函数的直方值,, 的直方表示我们的一个直方程式与直方程式与直方程式的直方程式与直方程式是的直方程式是, 。