Current guidelines from the World Health Organization indicate that the SARSCoV-2 coronavirus, which results in the novel coronavirus disease (COVID-19), is transmitted through respiratory droplets or by contact. Contact transmission occurs when contaminated hands touch the mucous membrane of the mouth, nose, or eyes. Moreover, pathogens can also be transferred from one surface to another by contaminated hands, which facilitates transmission by indirect contact. Consequently, hands hygiene is extremely important to prevent the spread of the SARSCoV-2 virus. Additionally, hand washing and/or hand rubbing disrupts also the transmission of other viruses and bacteria that cause common colds, flu and pneumonia, thereby reducing the overall disease burden. The vast proliferation of wearable devices, such as smartwatches, containing acceleration, rotation, magnetic field sensors, etc., together with the modern technologies of artificial intelligence, such as machine learning and more recently deep-learning, allow the development of accurate applications for recognition and classification of human activities such as: walking, climbing stairs, running, clapping, sitting, sleeping, etc. In this work we evaluate the feasibility of an automatic system, based on current smartwatches, which is able to recognize when a subject is washing or rubbing its hands, in order to monitor parameters such as frequency and duration, and to evaluate the effectiveness of the gesture. Our preliminary results show a classification accuracy of about 95% and of about 94% for respectively deep and standard learning techniques.


翻译:世界卫生组织目前的指导方针表明,SARSCOV-2 Corona病毒(COVID-19)通过呼吸液滴或接触,通过呼吸液滴或接触传播了新冠状病毒(COVID-19),通过呼吸道滴子或接触传播。当被污染的手碰到嘴、鼻子或眼睛的粘膜粘膜时,即发生接触;此外,病原体也可以通过被污染的手从一个表面转移到另一个表面,从而便利间接接触的传播。因此,手卫生对于防止SARSCOV-2病毒的传播极为重要。此外,洗手和/或手摩擦也扰乱了其他导致常见感冒、流感和肺炎的病毒和细菌的传播,从而减轻了总体疾病负担。可磨损装置的大量扩散,例如智能手表、包含加速、旋转、磁场传感器等,连同现代人工智能技术,例如机器学习和最近更深的学习,可以开发准确的应用,以确认人类活动的认知和分类,例如:行走、爬楼梯、跑、拍打、坐、睡觉等。在这项工作中,我们评估了自动系统的可行性,在目前智能观察和手势的频率上,可以显示机能的频率上,从而显示,从而显示,可以显示,可以显示的周期的周期的周期的周期,从而显示,从而显示其的周期的周期的周期。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员