Motivated by a rigidity-theoretic perspective on the Localization Problem in 2D, we develop an algorithm for computing circuit polynomials in the algebraic rigidity matroid associated to the Cayley-Menger ideal for $n$ points in 2D. We introduce combinatorial resultants, a new operation on graphs that captures properties of the Sylvester resultant of two polynomials in the algebraic rigidity matroid. We show that every rigidity circuit has a construction tree from $K_4$ graphs based on this operation. Our algorithm performs an algebraic elimination guided by the construction tree, and uses classical resultants, factorization and ideal membership. To demonstrate its effectiveness, we implemented our algorithm in Mathematica: it took less than 15 seconds on an example where a Groebner Basis calculation took 5 days and 6 hrs.
翻译:在对2D本地化问题的僵硬理论观点的推动下,我们开发了一种算法,用于计算与Cayley-Menger理想有关的2D美元点的代数硬度模型中的电路多子机器人。我们引入了组合结果成像器,这是在图形上进行的新操作,它捕捉了在代数硬度制成的两种多元性成像中产生的Sylvester特性。我们显示,每个硬度电路都有基于此操作的K_4美元的图表中的构造树。我们的算法在建筑树的指导下进行了代数消除,并使用了古典结果、因子化和理想成份。为了证明它的有效性,我们在数学中采用了我们的算法:我们用了不到15秒的时间,一个示例就是Groebner基准计算用了5天6小时。