A team of mobile agents, starting from distinct nodes of a network, have to meet at the same node and declare that they all met. Agents execute the same algorithm, which they start when activated by an adversary or by an agent entering their initial node. When activated, agents traverse edges of the network in synchronous rounds. Their perception and communication are strictly local. This task, known as gathering, is a central problem in distributed mobile systems. Most prior work focuses on minimizing its time complexity, i.e., the worst-case number of rounds between the start of the earliest agent and the task completion. To break possible symmetries, deterministic solutions typically assume that agents have pairwise distinct IDs, called labels, known only to themselves. But must all labels be pairwise distinct to guarantee deterministic gathering? We address this question by considering agents that may share the same label. A team L is said to be gatherable if, for every initial setting of L, there is an algorithm that solves gathering. Our contribution is threefold. (1) We give a full characterization of the gatherable teams. (2) We design an algorithm that gathers all of them in poly$(n,\log\lambda)$ time, where $n$ (resp. $\lambda$) is the graph order (resp. the smallest label in L). This algorithm requires the agents to initially share only $O(\log \log \log \mu)$ bits of common knowledge, where $\mu$ is the largest label multiplicity in L. (3) We show this dependency is almost optimal to get a poly$(n,\log\lambda)$-time complexity. As a by-product, we get the first deterministic poly$(n,\log\lambda)$-time algorithm requiring no common knowledge to gather any team when all labels are distinct. Known to be achievable for two-agent teams, extending this to any team size faced a major challenge: termination detection. Our techniques to address it may be of independent interest.


翻译:一组移动智能体从网络的不同节点出发,需要在同一节点相遇并宣告全体集合完成。智能体执行相同算法,其启动时机由敌手或进入其初始节点的其他智能体激活。激活后,智能体以同步轮次遍历网络边。其感知与通信严格遵循局部性原则。该任务被称为聚集,是分布式移动系统中的核心问题。现有研究主要聚焦于最小化时间复杂度,即最早启动的智能体至任务完成的最坏情况轮次数。为打破可能的对称性,确定性解决方案通常假设智能体具有仅自身可知的两两相异标识符(称为标签)。但实现确定性聚集是否必须要求所有标签两两相异?本文通过考虑允许共享相同标签的智能体来探讨该问题。若对于团队L的任意初始配置,均存在算法可实现聚集,则称该团队为可聚集的。我们的贡献包含三方面:(1)完整刻画了可聚集团队的特征;(2)设计了在poly$(n,\log\lambda)$时间内聚集所有此类团队的算法,其中$n$(对应地$\lambda$)表示图的阶数(对应地L中的最小标签)。该算法仅要求智能体初始共享$O(\log \log \log \mu)$比特的公共知识,其中$\mu$为L中标签的最大重复度;(3)证明该依赖关系对于获得poly$(n,\log\lambda)$时间复杂度近乎最优。作为衍生成果,我们首次提出了在标签全相异时无需公共知识即可聚集任意团队的确定性poly$(n,\log\lambda)$时间算法。已知该目标对双智能体团队可实现,但扩展至任意规模团队面临核心挑战:终止检测。我们解决该问题的技术可能具备独立研究价值。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年11月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员