We describe various issues caused by the lack of round-to-nearest mode in the \textit{gcc} compiler implementation of the fixed-point arithmetic data types and operations. We demonstrate that round-to-nearest is not performed in the conversion of constants, conversion from one numerical type to a less precise type and results of multiplications. Furthermore, we show that mixed-precision operations in fixed-point arithmetic lose precision on arguments, even before carrying out arithmetic operations. The ISO 18037:2008 standard was created to standardize C language extensions, including fixed-point arithmetic, for embedded systems. Embedded systems are usually based on ARM processors, of which approximately 100 billion have been manufactured by now. Therefore, the observations about numerical issues that we discuss in this paper can be rather dangerous and are important to address, given the wide ranging type of applications that these embedded systems are running.


翻译:我们描述了在固定点算数据类型和操作的编译器实施过程中缺乏圆到最接近模式造成的各种问题。我们证明,在转换常数、从一个数字类型转换到一个不太精确的类型和乘法结果时,没有进行圆到最接近的计算方法。此外,我们表明,固定点算术的混合精度操作甚至在进行算术操作之前就失去了对参数的精确度。ISO 18037:2008标准是用来规范嵌入系统的C语言扩展,包括固定点算术的。嵌入式系统通常以ARM处理器为基础,其中大约1,000亿个已经制造出来。因此,我们在本文件中讨论的数字问题观察可能相当危险,并且非常重要,因为这些嵌入系统正在运行的广泛应用类型。

0
下载
关闭预览

相关内容

GCC(GNU Compiler Collection,GNU 编译器套装),是一套由 GNU 开发的编程语言编译器。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
AutoML: A Survey of the State-of-the-Art
Arxiv
70+阅读 · 2019年8月14日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
6+阅读 · 2018年11月29日
Arxiv
3+阅读 · 2018年10月11日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
AutoML: A Survey of the State-of-the-Art
Arxiv
70+阅读 · 2019年8月14日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
6+阅读 · 2018年11月29日
Arxiv
3+阅读 · 2018年10月11日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员