Systematic generalization aims to evaluate reasoning about novel combinations from known components, an intrinsic property of human cognition. In this work, we study systematic generalization of NNs in forecasting future time series of dependent variables in a dynamical system, conditioned on past time series of dependent variables, and past and future control variables. We focus on systematic generalization wherein the NN-based forecasting model should perform well on previously unseen combinations or regimes of control variables after being trained on a limited set of the possible regimes. For NNs to depict such out-of-distribution generalization, they should be able to disentangle the various dependencies between control variables and dependent variables. We hypothesize that a modular NN architecture guided by the readily-available knowledge of independence of control variables as a potentially useful inductive bias to this end. Through extensive empirical evaluation on a toy dataset and a simulated electric motor dataset, we show that our proposed modular NN architecture serves as a simple yet highly effective inductive bias that enabling better forecasting of the dependent variables up to large horizons in contrast to standard NNs, and indeed capture the true dependency relations between the dependent and the control variables.
翻译:在这项工作中,我们研究在动态系统预测未来时间序列的依附变量时,以过去依附变量的时间序列以及过去和未来的控制变量为条件,系统化的概括化;我们注重系统化的概括化,即基于NN的预测模型在经过有限的一套可能制度的培训后,应很好地利用先前看不见的组合或控制变量制度;对于NN的描述这种从分配的概括化,他们应能分辨控制变量和依附变量之间的各种依赖性。我们假设,基于随时可得的控制变量独立知识的模块化NNN结构是这一目的的一个潜在诱导偏差。我们通过对一个微量数据集的广泛经验评价和模拟电动发动机数据集,我们表明,我们提议的模块式NN的架构是一个简单但非常有效的诱导偏差,能够更好地预测到与标准NNP相对的大视野的依附变量,并确实捕捉到依赖性和依赖性变量之间的真正依赖性关系。