Recent work has shown that either (1) increasing the input length or (2) increasing model size can improve the performance of Transformer-based neural models. In this paper, we present a new model, called LongT5, with which we explore the effects of scaling both the input length and model size at the same time. Specifically, we integrated attention ideas from long-input transformers (ETC), and adopted pre-training strategies from summarization pre-training (PEGASUS) into the scalable T5 architecture. The result is a new attention mechanism we call {\em Transient Global} (TGlobal), which mimics ETC's local/global attention mechanism, but without requiring additional side-inputs. We are able to achieve state-of-the-art results on several summarization tasks and outperform the original T5 models on question answering tasks.
翻译:最近的工作表明,无论是(1)增加输入长度,还是(2)扩大模型规模,都可以改善以变异器为基础的神经模型的性能。在本文中,我们提出了一个名为LongT5的新模型,我们以此探讨同时扩大输入长度和模型规模的效果。具体地说,我们将长期投入变异器(ETC)的注意力纳入到培训前总结(PEGASUS)到可缩放的T5结构中,并采纳了培训前战略。结果是一个新的关注机制,我们称之为“TGlobal ” (TGlobal),它模仿了ETC的本地/全球关注机制,但不需要额外的侧面投入。我们能够在几项总化任务上实现最先进的结果,并在问题回答任务上超越了最初的T5模型。