We present a new software, HYPPO, that enables the automatic tuning of hyperparameters of various deep learning (DL) models. Unlike other hyperparameter optimization (HPO) methods, HYPPO uses adaptive surrogate models and directly accounts for uncertainty in model predictions to find accurate and reliable models that make robust predictions. Using asynchronous nested parallelism, we are able to significantly alleviate the computational burden of training complex architectures and quantifying the uncertainty. HYPPO is implemented in Python and can be used with both TensorFlow and PyTorch libraries. We demonstrate various software features on time-series prediction and image classification problems as well as a scientific application in computed tomography image reconstruction. Finally, we show that (1) we can reduce by an order of magnitude the number of evaluations necessary to find the most optimal region in the hyperparameter space and (2) we can reduce by two orders of magnitude the throughput for such HPO process to complete.
翻译:我们提出了一个新的软件,即海道生物圈,它能自动调整各种深层学习模型(DL)的超参数。与其他超参数优化方法不同,海道生物圈使用适应性代用模型,并直接说明模型预测的不确定性,以找到准确和可靠的、能作出可靠预测的模型。我们利用非同步的嵌套平行主义,能够大大减轻训练复杂结构的计算负担,量化不确定性。海道生物圈在平通实施,可以同时用于TensorFlow和PyTorch图书馆。我们展示了时间序列预测和图像分类问题的各种软件特征,以及计算图象图象重建的科学应用。最后,我们表明(1)我们可以通过规模的顺序减少在超光谱空间找到最理想区域所需的评价数量,(2)我们可以将这种海道生物圈进程完成的吞吐量减少两个数量级。