The development of smart systems (i.e., systems enhanced with AI components) has thrived thanks to the rapid advancements in neural networks (NNs). A wide range of libraries and frameworks have consequently emerged to support NN design and implementation. The choice depends on factors such as available functionalities, ease of use, documentation and community support. After adopting a given NN framework, organizations might later choose to switch to another if performance declines, requirements evolve, or new features are introduced. Unfortunately, migrating NN implementations across libraries is challenging due to the lack of migration approaches specifically tailored for NNs. This leads to increased time and effort to modernize NNs, as manual updates are necessary to avoid relying on outdated implementations and ensure compatibility with new features. In this paper, we propose an approach to automatically migrate neural network code across deep learning frameworks. Our method makes use of a pivot NN model to create an abstraction of the NN prior to migration. We validate our approach using two popular NN frameworks, namely PyTorch and TensorFlow. We also discuss the challenges of migrating code between the two frameworks and how they were approached in our method. Experimental evaluation on five NNs shows that our approach successfully migrates their code and produces NNs that are functionally equivalent to the originals. Artefacts from our work are available online.


翻译:智能系统(即集成人工智能组件的系统)的发展得益于神经网络(NNs)的快速进步而蓬勃发展。随之涌现出大量支持神经网络设计与实现的库和框架。选择取决于可用功能、易用性、文档和社区支持等因素。采用特定神经网络框架后,若性能下降、需求演变或引入新功能,组织后续可能选择切换至其他框架。遗憾的是,由于缺乏专门针对神经网络的迁移方法,跨库迁移神经网络实现具有挑战性。这导致神经网络现代化所需时间和精力增加,因为必须通过手动更新来避免依赖过时实现并确保与新功能的兼容性。本文提出一种跨深度学习框架自动迁移神经网络代码的方法。该方法利用枢轴神经网络模型在迁移前创建神经网络的抽象表示。我们使用两种主流神经网络框架(即PyTorch和TensorFlow)验证了该方法,并讨论了两框架间代码迁移的挑战及本方法的应对策略。在五个神经网络上的实验评估表明,本方法能成功迁移其代码并生成功能等效于原版的神经网络。本研究的实验材料已在线公开。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月18日
Arxiv
12+阅读 · 2020年12月10日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 12月18日
Arxiv
12+阅读 · 2020年12月10日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
29+阅读 · 2018年4月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员