Observational studies often present challenges for causal inference due to confounding and heterogeneity. In this paper, we illustrate how modern causal inference methods can be applied to large-scale academic salary data. Using records from 12,039 tenure-track faculty in the University of North Carolina system, linked with bibliometric indicators and institutional classifications, we estimate the causal effect of gender on faculty salaries. Our analysis combines propensity score matching with causal forests to adjust for rank, discipline, research productivity, and career experience. Results indicate that female faculty earn approximately 6% less than comparable male colleagues, with variation in the gap across career stages and levels of research productivity. This case study demonstrates how causal inference methods for observational data can provide insight into structural disparities in complex social systems.
翻译:暂无翻译