We present two methods for bounding the probabilities of benefit and harm under unmeasured confounding. The first method computes the (upper or lower) bound of either probability as a function of the observed data distribution and two intuitive sensitivity parameters which, then, can be presented to the analyst as a 2-D plot to assist her in decision making. The second method assumes the existence of a measured nondifferential proxy (i.e., direct effect) of the unmeasured confounder. Using this proxy, tighter bounds than the existing ones can be derived from just the observed data distribution.
翻译:我们提出了两种方法来约束在未经测量的混乱下的利益和损害的概率。第一种方法计算概率的(上下)约束值,作为观察到的数据分布的函数,两种直觉的敏感度参数,然后作为协助她决策的二维图向分析员提出。第二种方法假定非测量的混淆者存在一个测量的、非区别的代理(即直接效果)。使用这一替代方法,比现有参数更严格的界限可以仅仅从观察到的数据分布中推断出来。</s>