Reconfigurable intelligent surface (RIS) empowered communications with non-orthogonal multiple access (NOMA) has recently become as an appealing research direction for the next-generation wireless communications. In this paper, we propose a novel NOMA solution with RIS partitioning, where we aim to enhance the spectrum efficiency by improving the ergodic rate of all users, and to maximize the user fairness. In the proposed system, we distribute the physical resources among users such that the base station (BS) and RIS are dedicated to serve different clusters of users. Furthermore, we formulate an RIS partitioning optimization problem to slice the RIS elements between the users such that the user fairness is maximized. The formulated problem is a non-convex and non-linear integer programming (NLIP) problem with a combinatorial feasible set, which is very challenging to solve. Therefore, we exploit the structure of the problem to bound its feasible set and obtain a sub-optimal solution by sequentially applying three efficient search algorithms. Furthermore, we derive exact and asymptotic expressions for the outage probability. Simulation results clearly indicate the superiority of the proposed system over the considered benchmark systems in terms of ergodic sum-rate, outage probability, and user fairness performance.
翻译:重新配置智能表面(RIS) 增强与非垂直多功能接入的通信能力(NOMA) 最近已成为下一代无线通信的吸引性研究方向。 在本文中,我们提出了一个新型的NOMA 解决方案,用RIS分区,我们的目标是通过提高所有用户的随机率来提高频谱效率,并最大限度地提高用户的公平性。在拟议的系统中,我们向用户分配实物资源,使基地台和RIS专门用于为不同用户群提供服务。此外,我们制定了一个分层优化问题,以便在用户之间切除RIS元素,使用户的公平性能最大化。我们提出的问题是一个非康韦克斯和非线性整齐编程(NLIP)问题,它是一个组合可行的组合式程序,非常难以解决。因此,我们利用问题的结构来约束其可行性,并通过按顺序应用三种高效率的搜索算法获得一个亚优的解决方案。此外,我们从超概率中得出精确的和抽调的表达式表达方式。 模拟结果清楚地表明, 用户的概率率高于所考虑的系统。