Representation of linguistic phenomena in computational language models is typically assessed against the predictions of existing linguistic theories of these phenomena. Using the notion of polarity as a case study, we show that this is not always the most adequate set-up. We probe polarity via so-called 'negative polarity items' (in particular, English 'any') in two pre-trained Transformer-based models (BERT and GPT-2). We show that -- at least for polarity -- metrics derived from language models are more consistent with data from psycholinguistic experiments than linguistic theory predictions. Establishing this allows us to more adequately evaluate the performance of language models and also to use language models to discover new insights into natural language grammar beyond existing linguistic theories. Overall, our results encourage a closer tie between experiments with human subjects and with language models. We propose methods to enable this closer tie, with language models as part of experimental pipeline, and show this pipeline at work.
翻译:在计算语言模型中,语言现象在计算语言模型中的代表性通常根据对这些现象现有语言理论的预测进行评估。我们用极性概念作为案例研究,表明这并不总是最适当的设置。我们通过两个预先培训的基于变异器模型(BERT和GPT-2)(特别是英文“any”)的所谓“负极性项目”来探测极性。我们显示,至少对极性而言,语言模型得出的指标比语言理论预测更符合心理语言实验的数据。建立这个概念,使我们能够更充分地评估语言模型的性能,并利用语言模型在现有语言理论之外对自然语言语法进行新的洞察。总体而言,我们的成果鼓励与人类主体和语言模型进行更密切的实验。我们提出了使这种密切关联与语言模型作为实验管道的一部分更紧密的方法,并在工作时展示这一管道。