Encodings of term rewriting systems (TRSs) into graph rewriting systems usually lose global termination, meaning the encodings do not terminate on all graphs. A typical encoding of the terminating TRS rule a(b(x)) -> b(a(x)), for example, may be indefinitely applicable along a cycle of a's and b's. Recently, we introduced PBPO+, a graph rewriting formalism in which rules employ a type graph to specify transformations and control rule applicability. In the present paper, we show that PBPO+ allows for a natural encoding of linear TRS rules that preserves termination globally. This result is a step towards modeling other rewriting formalisms, such as lambda calculus and higher order rewriting, using graph rewriting in a way that preserves properties like termination and confluence. We moreover expect that the encoding can serve as a guide for lifting TRS termination methods to PBPO+ rewriting.
翻译:将术语重写系统( TRS) 编码成图形重写系统通常会失去全球终止, 意思是编码不会在所有图表上结束。 例如, 终止 TRS 规则a( b( x)) - > b( a( x) 的典型编码可能无限期地适用于一个和 b 的周期。 最近, 我们引入了 PBPO+, 一个图形重写形式学, 其中规则使用类型图来指定变换和控制规则的适用性。 在本文中, 我们显示 PBPO+ 允许将保存终止的线性 TRS 规则进行自然编码。 这个结果是向其他重写形式主义模式的模型化步骤, 例如 羔羊计算和更高的顺序重写, 使用图表重写的方式保存终止和组合等属性。 我们还期望该编码可以作为将 TRS 终止方法提升为 PBPO+ 重写的指导 。