Recently, the general-to-customized paradigm has emerged as the dominant approach for Cross-Modal Retrieval (CMR), which reconciles the distribution shift problem between the source domain and the target domain. However, existing general-to-customized CMR methods typically assume that the entire target-domain data is available, which is easily violated in real-world scenarios and thus inevitably suffer from the query shift (QS) problem. Specifically, query shift embraces the following two characteristics and thus poses new challenges to CMR. i) Online Shift: real-world queries always arrive in an online manner, rendering it impractical to access the entire query set beforehand for customization approaches; ii) Diverse Shift: even with domain customization, the CMR models struggle to satisfy queries from diverse users or scenarios, leaving an urgent need to accommodate diverse queries. In this paper, we observe that QS would not only undermine the well-structured common space inherited from the source model, but also steer the model toward forgetting the indispensable general knowledge for CMR. Inspired by the observations, we propose a novel method for achieving online and harmonious adaptation against QS, dubbed Robust adaptation with quEry ShifT (REST). To deal with online shift, REST first refines the retrieval results to formulate the query predictions and accordingly designs a QS-robust objective function on these predictions to preserve the well-established common space in an online manner. As for tackling the more challenging diverse shift, REST employs a gradient decoupling module to dexterously manipulate the gradients during the adaptation process, thus preventing the CMR model from forgetting the general knowledge. Extensive experiments on 20 benchmarks across three CMR tasks verify the effectiveness of our method against QS.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员