Affective robotics research aims to better understand human social and emotional signals to improve human-robot interaction (HRI), and has been widely used during the last decade in multiple application fields. Past works have demonstrated, indeed, the potential of using affective robots (i.e., that can recognize, or interpret, or process, or simulate human affects) for healthcare applications, especially wellbeing. This paper systematically review the last decade (January 2013 - May 2022) of HRI literature to identify the main features of affective robotics for wellbeing. Specifically, we focused on the types of wellbeing goals affective robots addressed, their platforms, their shapes, their affective capabilities, and their autonomy in the surveyed studies. Based on this analysis, we list a set of recommendations that emerged, and we also present a research agenda to provide future directions to researchers in the field of affective robotics for wellbeing.


翻译:情感机器人的研究旨在更好地理解人类社交和情感信号,以改善人机交互(HRI),并已在多个应用领域广泛使用。过去的研究已经证明,使用情感机器人(即能够认识、解释、处理或模拟人类情感的机器人)可以为医疗保健应用尤其是福祉方面带来潜在的好处。本文系统地回顾了过去十年(2013年1月至2022年5月)的HRI文献,以确定情感机器人在福祉方面的主要特点。具体而言,我们关注情感机器人在调节不同类型福祉目标方面的表现、它们的平台、形状、情感能力以及在调查中的自治性。基于这种分析,我们列出了一系列相应的推荐,并提出了一个研究议程,以提供未来情感机器人用于福祉领域中的研究方向。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
精彩活动丨AI for Graph Computation学术研讨会
图与推荐
1+阅读 · 2022年7月16日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
102+阅读 · 2020年3月4日
VIP会员
相关VIP内容
相关资讯
精彩活动丨AI for Graph Computation学术研讨会
图与推荐
1+阅读 · 2022年7月16日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员