We propose a new variable selection algorithm, subsample-ordered least-angle regression (solar), and its coordinate descent generalization, solar-cd. Solar re-constructs lasso paths using the $L_0$ norm and averages the resulting solution paths across subsamples. Path averaging retains the ranking information of the informative variables while averaging out sensitivity to high dimensionality, improving variable selection stability, efficiency, and accuracy. We prove that: (i) with a high probability, path averaging perfectly separates informative variables from redundant variables on the average $L_0$ path; (ii) solar variable selection is consistent and accurate; and (iii) the probability that solar omits weak signals is controllable for finite sample size. We also demonstrate that: (i) solar yields, with less than $1/3$ of the lasso computation load, substantial improvements over lasso in terms of the sparsity (64-84\% reduction in redundant variable selection) and accuracy of variable selection; (ii) compared with the lasso safe/strong rule and variable screening, solar largely avoids selection of redundant variables and rejection of informative variables in the presence of complicated dependence structures; (iii) the sparsity and stability of solar conserves residual degrees of freedom for data-splitting hypothesis testing, improving the accuracy of post-selection inference on weak signals with limited $n$; (iv) replacing lasso with solar in bootstrap selection (e.g., bolasso or stability selection) produces a multi-layer variable ranking scheme that improves selection sparsity and ranking accuracy with the computation load of only one lasso realization; and (v) given the computation resources, solar bootstrap selection is substantially faster (98\% lower computation time) than the theoretical maximum speedup for parallelized bootstrap lasso (confirmed by Amdahl's law).


翻译:我们提出一个新的变量选择算法, 亚模量顺序最小的回归( 索拉度), 以及它协调的下降一般化, 太阳能cd 。 太阳能重新构建 lasso 路径, 使用$_ 0 标准, 并平均 子样的解决方案路径。 路径平均保留信息变量的排名信息, 同时平均对高维的敏感度, 提高选择稳定性、 效率和准确性。 我们证明:( 一) 概率高, 路径平均完美地将信息变量与平均 $L_ 0 路径上的冗余变量区分开来;(二) 太阳能变量的选择是一致和准确的;(三) 太阳能省略弱信号的概率选择概率, 对于有限的样本大小来说是可以控制。 我们还表明:(一) 太阳能的收益, 低于1/3 的计算负荷, 大大改善弹性的顺序, (64- 84 调值的变量选择) 和变量选择的准确性;(二) 与安全/ 坚固规则以及变量的筛选相比, 太阳变量的选择是一致和准确性的, 避免选择一个更精确性, 稳定值的变值的变值的变值的变值的变值, 和变值的变值的变值的变值的变值的变值的变值的变值的变值, 变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值, 的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值, 和变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值, 的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值, 的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值的变值

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员