Homomorphic Encryption (HE), allowing computations on encrypted data (ciphertext) without decrypting it first, enables secure but prohibitively slow Convolutional Neural Network (CNN) inference for privacy-preserving applications in clouds. To reduce the inference latency, one approach is to pack multiple messages into a single ciphertext in order to reduce the number of ciphertexts and support massive parallelism of Homomorphic Multiply-Accumulate (HMA) operations between ciphertexts. Despite the faster HECNN inference, the mainstream packing schemes Dense Packing (DensePack) and Convolution Packing (ConvPack) introduce expensive rotation overhead, which prolongs the inference latency of HECNN for deeper and wider CNN architectures. In this paper, we propose a low-rank factorization method named FFConv dedicated to efficient ciphertext packing for reducing both the rotation overhead and HMA operations. FFConv approximates a d x d convolution layer with low-rank factorized convolutions, in which a d x d low-rank convolution with fewer channels is followed by a 1 x 1 convolution to restore the channels. The d x d low-rank convolution with DensePack leads to significantly reduced rotation operations, while the rotation overhead of 1 x 1 convolution with ConvPack is close to zero. To our knowledge, FFConv is the first work that is capable of reducing the rotation overhead incurred by DensePack and ConvPack simultaneously, without introducing additional special blocks into the HECNN inference pipeline. Compared to prior art LoLa and Falcon, our method reduces the inference latency by up to 88% and 21%, respectively, with comparable accuracy on MNIST and CIFAR-10.


翻译:基因加密( HH), 允许在不首先解密的情况下计算加密数据( 密码), 从而可以在不首先解密的情况下对加密数据( 密码) 进行计算, 能够对云层中的隐私保护应用进行安全但令人望而却步的动态神经网络( CNN) 推算。 为了降低推断延迟度, 一种方法是将多条信息装入一个单一的密码文本中, 以减少密码数, 支持在密码文本之间大量平行的多层( HMA) 操作。 尽管 HCNN 推断速度较快, 主流包装计划( DensePack ) 和 Convolution 包装( Convolution), 引入了昂贵的神经包包包包包( DonPack ), 引入了昂贵的自动折叠式自动折叠式自动折叠式自动折叠式自动折叠式自动转换式自动折叠式自动递转式自动递转式自动递减。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员