To develop an automated workflow for rectal cancer three-dimensional conformal radiotherapy treatment planning that combines deep-learning(DL) aperture predictions and forward-planning algorithms. We designed an algorithm to automate the clinical workflow for planning with field-in-field. DL models were trained, validated, and tested on 555 patients to automatically generate aperture shapes for primary and boost fields. Network inputs were digitally reconstructed radiography, gross tumor volume(GTV), and nodal GTV. A physician scored each aperture for 20 patients on a 5-point scale(>3 acceptable). A planning algorithm was then developed to create a homogeneous dose using a combination of wedges and subfields. The algorithm iteratively identifies a hotspot volume, creates a subfield, and optimizes beam weight all without user intervention. The algorithm was tested on 20 patients using clinical apertures with different settings, and the resulting plans(4 plans/patient) were scored by a physician. The end-to-end workflow was tested and scored by a physician on 39 patients using DL-generated apertures and planning algorithms. The predicted apertures had Dice scores of 0.95, 0.94, and 0.90 for posterior-anterior, laterals, and boost fields, respectively. 100%, 95%, and 87.5% of the posterior-anterior, laterals, and boost apertures were scored as clinically acceptable, respectively. Wedged and non-wedged plans were clinically acceptable for 85% and 50% of patients, respectively. The final plans hotspot dose percentage was reduced from 121%($\pm$ 14%) to 109%($\pm$ 5%) of prescription dose. The integrated end-to-end workflow of automatically generated apertures and optimized field-in-field planning gave clinically acceptable plans for 38/39(97%) of patients. We have successfully automated the clinical workflow for generating radiotherapy plans for rectal cancer for our institution.
翻译:开发直肠三维连续放射治疗自动化工作流程, 将深度学习( DL) 孔径预测和前方规划算法结合起来。 我们设计了一个算法, 将临床工作流程与实地规划自动化。 DL 模型经过培训、 验证, 并对555名病人进行了测试, 为初级和助推场自动生成孔径形状。 网络投入是数字重建的放射、 肿瘤总量( GTV) 和诺达尔 GTV。 一位医生以5点( > 3 可接受的) 比例为20名病人计算每孔数。 然后开发了一个规划算法, 利用网络和子场组合, 来创造同质剂量剂量。 该算法迭代确定了一个热点数量, 创建了一个子场, 并且在没有用户干预的情况下优化了比重。 该算法由20名病人使用不同环境的临床孔径( 4个计划/病人) 得分数。 我们的晚端和晚端工作流程由39名病人用DL 生成的口径和计划进行测试和计划。 预算中, 预算的50度计划分别生成了50个热点, 0.9 % 和直径计划,, 和直径平面计划分别生成了 0.9 和直位平方平方平方平方平方平方( 0.9平方平方平方平方平方平平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方