Anomaly detection can be conceived either through generative modelling of regular training data or by discriminating with respect to negative training data. These two approaches exhibit different failure modes. Consequently, hybrid algorithms present an attractive research goal. Unfortunately, dense anomaly detection requires translational equivariance and very large input resolutions. These requirements disqualify all previous hybrid approaches to the best of our knowledge. We therefore design a novel hybrid algorithm based on reinterpreting discriminative logits as a logarithm of the unnormalized joint distribution $\hat{p}(\mathbf{x}, \mathbf{y})$. Our model builds on a shared convolutional representation from which we recover three dense predictions: i) the closed-set class posterior $P(\mathbf{y}|\mathbf{x})$, ii) the dataset posterior $P(d_{in}|\mathbf{x})$, iii) unnormalized data likelihood $\hat{p}(\mathbf{x})$. The latter two predictions are trained both on the standard training data and on a generic negative dataset. We blend these two predictions into a hybrid anomaly score which allows dense open-set recognition on large natural images. We carefully design a custom loss for the data likelihood in order to avoid backpropagation through the untractable normalizing constant $Z(\theta)$. Experiments evaluate our contributions on standard dense anomaly detection benchmarks as well as in terms of open-mIoU - a novel metric for dense open-set performance. Our submissions achieve state-of-the-art performance despite neglectable computational overhead over the standard semantic segmentation baseline.
翻译:异常的检测可以通过定期培训数据的基因建模来构思, 或者通过对负面培训数据进行区分来构思。 这两种方法都表现出不同的失败模式。 因此, 混合算法可以显示一个有吸引力的研究目标 。 不幸的是, 密度异常的检测需要翻译等宽度和非常大的输入分辨率。 这些要求使得所有先前的混合方法都不符合我们的知识。 因此, 我们设计了一个新的混合算法, 其基础是将歧视性逻辑重新解读为 $\ hat{p} (mathbf{x}) 的对数。 这两种方法都显示不同的失败模式。 我们的模型建立在一个共同的共振动表达式模型上, 我们从中恢复了三种密集的预测 : i) 闭定级类的对数 $P (mathb{y_mathb{x}} $。 (ii) 数据集的对 ridiscridition $P (d) ral- discal discoal disal discoal a labal dal deal deal dal deal dal dal deal deal deal dal disal deal deal deal deal deal deal) a we a ex deal deal deal disal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal disal disal deal deal deal deal deal a 。 。 exdal deal deal deal dece 。 exmental disal deal a a a a a a a a a a a exd sald sald sald a a 。 。 。后, 和我们关于我们我们我们关于我们的对数据, 数据进行了进行的对数据进行了进行了一种不进行的不的不进行的不进行不进行不作不进行不进行不上,我们的正常数据,我们的正常数据, 数据,我们的对地的对地的不作的不作的不作的正常数据,我们的对地的不作的不作的不作的正常数据,我们的对地的精确数据进行了不作的