In this paper, we present improved approximation algorithms for the (unsplittable) Capacitated Vehicle Routing Problem (CVRP) in general metrics. In CVRP, introduced by Dantzig and Ramser (1959), we are given a set of points (clients) $V$ together with a depot $r$ in a metric space, with each $v\in V$ having a demand $d_v>0$, and a vehicle of bounded capacity $Q$. The goal is to find a minimum cost collection of tours for the vehicle, each starting and ending at the depot, such that each client is visited at least once and the total demands of the clients in each tour is at most $Q$. In the unsplittable variant we study, the demand of a node must be served entirely by one tour. We present two approximation algorithms for unsplittable CVRP: a combinatorial $(\alpha+1.75)$-approximation, where $\alpha$ is the approximation factor for the Traveling Salesman Problem, and an approximation algorithm based on LP rounding with approximation guarantee $\alpha+\ln(2) + \delta \approx 3.194 + \delta$ in $n^{O(1/\delta)}$ time. Both approximations can further be improved by a small amount when combined with recent work by Blauth, Traub, and Vygen (2021), who obtained an $(\alpha + 2\cdot (1 -\epsilon))$-approximation for unsplittable CVRP for some constant $\epsilon$ depending on $\alpha$ ($\epsilon > 1/3000$ for $\alpha = 1.5$).


翻译:在本论文中,我们展示了(未爆炸的)机动车辆脱轨问题(CVRP)的改进近似算法。在Dantzig和Ramser(1959年)推出的CVRP中,我们得到了一套点(客户)$V美元,以及一个大空间的仓库美元,每个美元V$都有一个需求d_v>0美元,还有一辆装配容量达Q美元的车辆。目标是为车辆找到最低成本的旅游收集,每辆在仓库开始和结束一次,每个客户至少访问一次,每次参观的客户总需求最多为美元。在我们研究中,一个结点的需求必须完全通过一次巡回来满足。我们为未破碎的CVRP提供了两种近似算法:一台调色调$(alpha+1.75美元)和一台装装饰品。美元是旅行销售员问题的近似值系数(1美元),每家客户总需求为500美元。在L-Balxxxxxxxxxx 工作期间,由L=xxxxxxxxxxxxx的近位算算。

0
下载
关闭预览

相关内容

元强化学习综述及前沿进展
专知会员服务
61+阅读 · 2021年1月31日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
专知会员服务
61+阅读 · 2020年3月4日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月18日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员