Sap exudation is the process whereby trees such as sugar (Acer saccharum) and red maple (A. rubrum) generate high positive stem pressure in response to repeated freeze-thaw cycles. This elevated xylem pressure permits sap to be harvested over a period of several weeks and hence is a major factor in the viability of the maple syrup industry. The extensive literature on sap exudation documents various competing hypotheses regarding the physical and biological mechanisms driving positive pressure generation in maple, but to date relatively little effort has been expended on devising detailed mathematical models for the exudation process. In this paper, we utilize an existing model of Graf et al. [J. Roy. Soc. Interface 12:20150665, 2015] that describes heat and mass transport within the multiphase gas-liquid-ice mixture within the porous xylem tissue. The model captures the inherent multiscale nature of xylem transport by including phase change and osmotic transport within wood cells on the microscale, which is coupled to heat transport through the tree stem on the macroscale. We extend this model by incorporating a root reflection coefficient that introduces an asymmetry in root water flux and hence permits a more realistic accumulation of stem pressure. A parametric study based on simulations with synthetic temperature data singles out the essential model parameters that have greatest impact on stem pressure build-up. Measured daily temperature fluctuations are then used as model inputs and the resulting simulated pressures are compared directly with experimental measurements taken from mature red and sugar maple stems during the sap harvest season. The results demonstrate that our multiscale freeze-thaw model reproduces realistic exudation behavior, thereby providing novel insights into the specific physical mechanisms that dominate positive pressure generation in maple trees.


翻译:糖( Acer sacharum) 和 红色地图( A. rubrum) 等树在反复冻结的温度周期中产生高正向干压压力。 高负载压力允许在几周内采集粪便, 因而是Maple 糖浆行业可行性的主要因素。 大量关于蒸发的文献记录了在地图中驱动正压生成的物理和生物机制的各种相互竞争的假设, 但迄今为止,在设计详细的脱硫过程数学模型方面所做的努力相对较少。 在本文中,我们使用了现有的Graf 等人的物理压力模型。 [J. Roy. Soc. 介质 12:201565, 2015] 高负载压力可以描述在多阶段气体- 液体- 糖浆模型中进行热量和大规模运输。 该模型通过包含阶段变化和在木细胞中进行骨质迁移的内在多尺度, 与通过宏观规模的树形输送热。 我们将这个模型从每天的温度流流流化模型中进行下去, 将最终的 用于 基础的 rodemoal rodeal roal deal deal deal dealal resmal 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
182+阅读 · 2020年7月29日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Nature 一周论文导读 | 2018 年 5 月 24 日
科研圈
11+阅读 · 2018年5月27日
Nature 一周论文导读 | 2018 年 3 月 29 日
科研圈
12+阅读 · 2018年4月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
5+阅读 · 2020年12月10日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
182+阅读 · 2020年7月29日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Nature 一周论文导读 | 2018 年 5 月 24 日
科研圈
11+阅读 · 2018年5月27日
Nature 一周论文导读 | 2018 年 3 月 29 日
科研圈
12+阅读 · 2018年4月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员