Automated Teller Machines (ATMs) represent the most used system for withdrawing cash. The European Central Bank reported more than 11 billion cash withdrawals and loading/unloading transactions on the European ATMs in 2019. Although ATMs have undergone various technological evolutions, Personal Identification Numbers (PINs) are still the most common authentication method for these devices. Unfortunately, the PIN mechanism is vulnerable to shoulder-surfing attacks performed via hidden cameras installed near the ATM to catch the PIN pad. To overcome this problem, people get used to covering the typing hand with the other hand. While such users probably believe this behavior is safe enough to protect against mentioned attacks, there is no clear assessment of this countermeasure in the scientific literature. This paper proposes a novel attack to reconstruct PINs entered by victims covering the typing hand with the other hand. We consider the setting where the attacker can access an ATM PIN pad of the same brand/model as the target one. Afterward, the attacker uses that model to infer the digits pressed by the victim while entering the PIN. Our attack owes its success to a carefully selected deep learning architecture that can infer the PIN from the typing hand position and movements. We run a detailed experimental analysis including 58 users. With our approach, we can guess 30% of the 5-digit PINs within three attempts -- the ones usually allowed by ATM before blocking the card. We also conducted a survey with 78 users that managed to reach an accuracy of only 7.92% on average for the same setting. Finally, we evaluate a shielding countermeasure that proved to be rather inefficient unless the whole keypad is shielded.


翻译:自动送货机(ATMs) 代表了最常用的撤回现金系统。 欧洲央行报告说, 2019年欧洲自动取款机上超过110亿次提取现金和卸载/卸载交易。 虽然自动取款机经历了各种技术演进, 但个人识别号码(PIN)仍是这些装置最常用的认证方法。 不幸的是, PIN 机制很容易被通过安装在自动取款机旁边的隐藏相机进行肩上俯冲攻击以赶上 PIN 垫。 为了克服这个问题, 人们会习惯用另一手来掩盖打字手。 虽然这些用户可能认为这种行为足够安全,可以防止上述攻击, 但科学文献中并没有对这一反措施作出明确的评估。 虽然个人识别号码(PIN)已经经历了不同的技术演进, 但本文建议用新的攻击来重建受害者用手打字输入的个人识别号码输入的个人识别号码(PIN ) 。 我们考虑攻击者可以使用与目标同一品牌/模一样的ATM PIN 。 之后, 攻击者只能用这个模型来评估受害者在进入 PIN 时所输入的数字数据。 我们的攻击要靠的是它的平均位置, 30个尝试, 。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2022年2月1日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员