To study the temperature in a gas subjected to electromagnetic radiations, one may use the Radiative Transfer equations coupled with the Navier-Stokes equations. The problem has 7 dimensions; however with minimal simplifications it is equivalent to a small number of integro-differential equations in 3 dimensions. We present the method and a numerical implementation using an H-matrix compression scheme. The result is a very fast: 50K physical points, all directions of radiation and 680 frequencies require less than 5 minutes on an Apple M1 Laptop. The method is capable of handling variable absorptioN and scattering functionS of spatial positions and frequencies. The implementation is done using htool, a matrix compression library interfaced with the PDE solver freefem++. Applications to the temperature in the French Chamonix valley is presented at different hours of the day with and without snow / clouds and with a variable absorption taken from the Gemini measurements. The result is precise enough to assert temperature differences due to increased absorption in the vibrational frequency subrange of greenhouse gasses.
翻译:为了研究受电磁辐射气体的温度,人们可以使用辐射转移方程式以及纳维埃-斯托克方程式。 问题有7维。 问题有7维。 但是,只要简化程度最小, 问题就相当于3维的少量异种异质方程式。 我们使用H- matrix压缩办法展示了该方法和数字实施方法, 结果是非常快: 50K 物理点、 所有辐射方向和680个频率都需要苹果 M1 笔记本机上不到5分钟。 该方法能够处理空间位置和频率的可变吸收N和散射功能。 实施的方法使用工具, 即一个与PDE 求解器Freefem++ 接口的矩阵压缩图书馆。 法国查莫尼克斯河谷的温度应用在当天的不同时间进行, 与雪/ 云不同, 并且从伽米尼测量中得出了可变的吸收结果。 其结果非常精确,足以确定温度差异, 原因是温室气体振动频率亚的吸收频率亚的吸收增加。