Currently available methods for extracting saliency maps identify parts of the input which are the most important to a specific fixed classifier. We show that this strong dependence on a given classifier hinders their performance. To address this problem, we propose classifier-agnostic saliency map extraction, which finds all parts of the image that any classifier could use, not just one given in advance. We observe that the proposed approach extracts higher quality saliency maps than prior work while being conceptually simple and easy to implement. The method sets the new state of the art result for localization task on the ImageNet data, outperforming all existing weakly-supervised localization techniques, despite not using the ground truth labels at the inference time. The code reproducing the results is available at https://github.com/kondiz/casme . The final version of this manuscript is published in Computer Vision and Image Understanding and is available online at https://doi.org/10.1016/j.cviu.2020.102969 .
翻译:现有的显要性地图的提取方法可以确定对特定固定分类器最重要的输入部分。 我们表明,这种对特定分类器的强烈依赖会妨碍其性能。 为了解决这一问题,我们建议分类器-不可知性显著性地图提取,它可以找到任何分类器可以使用的所有图像部分,而不仅仅是事先提供的。我们注意到,拟议方法提取的质量高于以往工作的突出性地图,同时在概念上简单易行,易于执行。该方法确定了图像网数据本地化任务的最新最新结果,超过了所有现有的薄弱、受监督的本地化技术,尽管在推断时间没有使用地面真相标签。 生成结果的代码可在https://github.comdiz/casme查阅。 该手稿的最后版本在计算机视野和图像理解中公布,并可在https://doi.org/10.1016/j.cviu.20102969上查阅。