We derive both the finite and infinite population spatial replicator dynamics as the fluid limit of a stochastic cellular automaton. The infinite population spatial replicator is identical to the model used by Vickers and our derivation justifies the addition of a diffusion to the replicator. The finite population form generalizes the results by Durett and Levin on finite spatial replicator games. We study the differences in the two equations as they pertain to the one-dimensional rock-paper-scissors game. In particular, we show that a constant amplitude traveling wave solution exists for the infinite population case and show how population collapse prevents its formation in the finite population case. This is closely related to recent work by Postlethwaite and Rucklidge on traveling waves in a similar but distinct rock-paper-scissor setting. Additional solution classes in variations of rock-paper-scissors are also studied.
翻译:我们得出了有限和无限的人口空间复制机动态,作为随机细胞自动图案的流体限制。无限的人口空间复制机与维克斯使用的模型完全相同,我们的推算也证明有理由增加复制机的扩散。有限的人口构成Durett和Levin关于有限空间复制机游戏的结果的概观。我们研究了两个方程式的差异,因为它们与单维的岩石-纸张剪切器游戏有关。特别是,我们表明,对于无限的人口案例,存在着恒定的振动波波解决方案,并表明人口崩溃如何防止其在有限人口案例中的形成。这与Postlethwaite和Rucklidge最近在一个类似但截然不同的岩石-纸张剪切器设置中移动波的工作密切相关。还研究了岩石-纸张剪切器变化中的额外溶解类。