We study a family of substitution tilings with similar right triangles of two sizes which is obtained using the substitution rule introduced in [Danzer, L. and van Ophuysen, G. A species of planar triangular tilings with inflation factor $\sqrt{-\tau}$. Res. Bull. Panjab Univ. Sci. 2000, 50, 1-4, pp. 137--175 (2001)]. In that paper, it is proved this family of tilings can be obtained from a local rule using decorated tiles. That is, that this family is \emph{sofic}. In the present paper, we provide an alternative proof of this fact. We use more decorated tiles than Danzer and van Ophuysen (22 in place of 10). However, our decoration of supertiles is more intuitive and our local rule is simpler.
翻译:我们研究的是两个尺寸相似的右三角形的替代砖瓦的大家庭,这是利用[Danzer, L. and van Ophuysen, G., 一种具有通胀系数$sqrt{-\tau}$的平面三角砖, Res. Bull. Panjab Univ. Sci. 2000, 50, 1-4, pp. 137-175 (2001)] 采用的替代规则获得的。在这份文件中,用装饰的瓷砖从当地规则中可以获得这种砖瓦的大家庭。也就是说,这个家庭是 emph{soph}。在本文件中,我们提供了这个事实的替代证明。我们使用比Danzer和van Ophuysen(22) 更多的装饰性瓷砖比 10 (10) 。然而,我们的超级瓷砖的装饰更不直观,我们的地方规则更简单。