In this paper, we investigate the problem of predicting the future volatility of Forex currency pairs using the deep learning techniques. We show step-by-step how to construct the deep-learning network by the guidance of the empirical patterns of the intra-day volatility. The numerical results show that the multiscale Long Short-Term Memory (LSTM) model with the input of multi-currency pairs consistently achieves the state-of-the-art accuracy compared with both the conventional baselines, i.e. autoregressive and GARCH model, and the other deep learning models.
翻译:在本文中,我们用深层次的学习技巧来调查预测Forex货币对对未来波动的问题。我们展示了如何通过指导日内波动的经验模式逐步建立深层学习网络。数字结果显示,多货币对投入的多尺度长期短期内存模型(LSTM)与常规基线(即自动递增和GARCH模型)以及其他深层学习模型相比,始终都能达到最先进的准确性。