The recurrence rebuild and retrieval method (R3M) is proposed in this paper to accelerate the electromagnetic (EM) validations of large-scale digital coding metasurfaces (DCMs). R3M aims to accelerate the EM validations of DCMs with varied codebooks, which involves the analysis of a group of similar but distinct coding patterns. The method transforms general DCMs to rigorously periodic arrays by replacing each coding unit with the macro unit, which comprises all possible coding states. The system matrix corresponding to the rigorously periodic array is globally shared for DCMs with arbitrary codebooks via implicit retrieval. The discrepancy of the interactions for edge and corner units are precluded by the basis extension of periodic boundaries. Moreover, the hierarchical pattern exploitation algorithm is leveraged to efficiently assemble the system matrix for further acceleration. Due to the fully utilization of the rigid periodicity, the computational complexity of R3M is theoretically lower than that of $\mathcal{H}$-matrix within the same paradigm. Numerical results for two types of DCMs indicate that R3M is accurate in comparison with commercial software. Besides, R3M is also compatible with the preconditioning for efficient iterative solutions. The efficiency of R3M for DCMs outperforms the conventional fast algorithms by a large margin in both the storage and CPU time cost.


翻译:本文建议重现重置和检索方法(R3M),以加速大型数字编码元表(DCM)的电磁(EM)验证。R3M旨在加速对具有各种编码的DCM(DCM)的电磁(EM)验证,这涉及对一组类似但不同的编码模式的分析。该方法将普通DCM(DCM)转换为严格的定期阵列,用由所有可能的编码国组成的宏观单位替换每个编码单位。严格定期阵列对应的系统矩阵通过隐含检索,为DCM(DCM)在全球共享任意的编码簿共享。边和角单元的相互作用差异通过定期边界的基础扩展加以排除。此外,等级模式开发算法还被用来高效率地组装系统矩阵,以便进一步加速。由于充分利用了僵硬的周期,R3M(R3M)的计算复杂性在理论上低于由所有可能的编码国组成的宏编码单位。两种类型的DCM(DCM)的数值矩阵结果显示,与商业软件相比R3M(R3M)之间的相互作用是准确的。此外,R3M(R3M)还被用来高效率的基点和快速的DC(CM(CM)的时差)的大型存储法)的快速基压效率。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2022年2月9日
Age of Information in Random Access Channels
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
3+阅读 · 2020年4月29日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员