The combined growth of available data and their unstructured nature has received increased interest in natural language processing (NLP) techniques to make value of these data assets since this format is not suitable for statistical analysis. This work presents a systematic literature review of state-of-the-art advances using transformer-based methods on electronic medical records (EMRs) in different NLP tasks. To the best of our knowledge, this work is unique in providing a comprehensive review of research on transformer-based methods for NLP applied to the EMR field. In the initial query, 99 articles were selected from three public databases and filtered into 65 articles for detailed analysis. The papers were analyzed with respect to the business problem, NLP task, models and techniques, availability of datasets, reproducibility of modeling, language, and exchange format. The paper presents some limitations of current research and some recommendations for further research.


翻译:随着可用数据的不断增长和非结构化本质的数据,自然语言处理(NLP)技术的使用已引起极大兴趣,以利用这些数据资产。这个格式不适合统计分析。本文提供了系统文献综述的最新进展,介绍了在不同NLP任务中使用基于transformer方法的电子病历(EMR)的研究。据我们所知,本文是提供在EMR领域应用NLP的transformer方法的综合研究。在最初的查询中,从三个公共数据库中选择了99篇文章,并过滤为65篇文章进行详细分析。文章根据业务问题、NLP任务、模型和技术、数据集的可用性、建模的可重复性、语言和交换格式进行分析。该论文提出了当前研究的一些限制和一些进一步研究的建议。

0
下载
关闭预览

相关内容

NLP:自然语言处理
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
110+阅读 · 2020年2月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员