The development and adoption of Internet of Things (IoT) devices will grow significantly in the coming years to enable Industry 4.0. Many forms of IoT devices will be developed and used across industry verticals. However, the euphoria of this technology adoption is shadowed by the solemn presence of cyber threats that will follow its growth trajectory. Cyber threats would either embed their malicious code or attack vulnerabilities in IoT that could induce significant consequences in cyber and physical realms. In order to manage such destructive effects, incident responders and cyber investigators require the capabilities to find these rogue IoT and contain them quickly. Such online devices may only leave network activity traces. A collection of relevant traces could be used to infer the IoT's network behaviorial fingerprints and in turn could facilitate investigative find of these IoT. However, the challenge is how to infer these fingerprints when there is limited network activity traces. This research proposes the novel model construct that learns to infer the network behaviorial fingerprint of specific IoT based on limited network activity traces using a One-Card Time Series Meta-Learner called DeepNetPrint. Our research also demonstrates the application of DeepNetPrint to identify IoT devices that performs comparatively well against leading supervised learning models. Our solution would enable cyber investigator to identify specific IoT of interest while overcoming the constraints of having only limited network traces of the IoT.


翻译:在未来几年里,开发和采用Thines Internet(IoT)装置将大大发展壮大,使产业4.0能够实现产业4.0。许多形式的IoT装置将开发并在整个行业纵向使用。然而,这种技术的采用令人欣喜的是,随着其增长轨迹而出现的庄严的网络威胁。网络威胁要么嵌入其恶意代码,要么攻击IoT中的弱点,从而在网络和物理领域造成重大后果。为了管理这种破坏性效应,事件应对者和网络调查员需要有能力找到这些无赖IoT并迅速加以控制。这种在线装置只能留下网络活动痕迹。可以使用一系列相关痕迹来推断IoT网络的网络行为指纹,从而帮助调查找到这些IoT。然而,挑战是如何在网络活动痕迹有限的情况下推断这些指纹。这项研究提出了一个新的模型,即仅根据有限的网络活动痕迹来推断网络的网络行为指纹,使用One-Card Time-Learner名为DeepNetPrint。我们的研究还可以用来推断IoNetPrint的网络的网络行为特征,同时进行对比性研究。我们的研究还展示了对互联网的具体模型,从而识别工具的学习。我们对互联网的对比性测试的模型的利用。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员