PAC-Bayes is a popular and efficient framework for obtaining generalization guarantees in situations involving uncountable hypothesis spaces. Unfortunately, in its classical formulation, it only provides guarantees on the expected risk of a randomly sampled hypothesis. This requires stochastic predictions at test time, making PAC-Bayes unusable in many practical situations where a single deterministic hypothesis must be deployed. We propose a unified framework to extract guarantees holding for a single hypothesis from stochastic PAC-Bayesian guarantees. We present a general oracle bound and derive from it a numerical bound and a specialization to majority vote. We empirically show that our approach consistently outperforms popular baselines (by up to a factor of 2) when it comes to generalization bounds on deterministic classifiers.


翻译:PAC-Bayes是一种流行且高效的框架,用于在涉及不可数假设空间的情况下获得泛化保证。遗憾的是,在其经典表述中,该框架仅对随机采样假设的期望风险提供保证。这要求在测试时进行随机预测,使得PAC-Bayes在许多必须部署单一确定性假设的实际场景中无法使用。我们提出了一个统一框架,从随机PAC-Bayesian保证中提取适用于单一假设的保证。我们提出了一个通用的预言机边界,并从中推导出数值边界及针对多数投票的特化形式。实验表明,在确定性分类器的泛化边界方面,我们的方法始终优于常用基线方法(提升幅度最高达2倍)。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员