Locating pathologies automatically from medical images aids the understanding of the emergence and progression of diseases, and such an ability can significantly benefit clinical diagnostics. However, existing deep learning models heavily rely on expert annotations and lack generalization capabilities in open clinical environments. In this study, we present a generalizable vision-language pre-training model for Annotation-Free pathology Localization (AFLoc). The core strength of AFLoc lies in its image annotation-free multi-level semantic structure-based contrastive learning, which comprehensively aligns multi-granularity medical concepts from reports with abundant image features, to adapt to the diverse expressions of observed and emerging unseen pathologies. We conducted extensive experimental validation across 4 distinct external datasets, encompassing 11 types of chest pathologies, to verify its generalization ability. The results demonstrate that AFLoc surpasses 6 state-of-the-art methods and even outperforms the human benchmark in locating 5 different pathologies, underscoring its suitability for complex clinical environments.
翻译:暂无翻译