Humans rely heavily on shape information to recognize objects. Conversely, convolutional neural networks (CNNs) are biased more towards texture. This is perhaps the main reason why CNNs are vulnerable to adversarial examples. Here, we explore how shape bias can be incorporated into CNNs to improve their robustness. Two algorithms are proposed, based on the observation that edges are invariant to moderate imperceptible perturbations. In the first one, a classifier is adversarially trained on images with the edge map as an additional channel. At inference time, the edge map is recomputed and concatenated to the image. In the second algorithm, a conditional GAN is trained to translate the edge maps, from clean and/or perturbed images, into clean images. Inference is done over the generated image corresponding to the input's edge map. Extensive experiments over 10 datasets demonstrate the effectiveness of the proposed algorithms against FGSM and $\ell_\infty$ PGD-40 attacks. Further, we show that a) edge information can also benefit other adversarial training methods, and b) CNNs trained on edge-augmented inputs are more robust against natural image corruptions such as motion blur, impulse noise and JPEG compression, than CNNs trained solely on RGB images. From a broader perspective, our study suggests that CNNs do not adequately account for image structures that are crucial for robustness. Code is available at:~\url{https://github.com/aliborji/Shapedefense.git}.
翻译:人类严重依赖形状信息来识别对象。 相反, 革命性神经网络( CNN) 偏向于纹理。 这或许是CNN 容易受对抗性实例影响的主要原因。 在这里, 我们探索如何将形状偏向纳入CNN, 以提高其稳健性。 提出了两种算法, 其根据的观察是, 边缘不易到中度不易触动。 在第一个观察中, 分类者对以边缘地图作为额外频道的图像进行对抗性训练。 在推断时, 边缘地图被重新校正, 并被连接到图像中。 在第二个算法中, 有条件的GAN 受过训练, 将边缘地图从清洁和/ 或 四周图像转换成清洁图像。 对生成的图像进行推理。 超过10个数据集的广泛实验表明, 与FGSMSM和 $\ellinftyleinal comty 相比, 高级地图上的边端信息也可以对图像进行重新校正化, 而经过训练的RIMISB 则表明, 的精确度比我们更深层的图像更精确的 RGB。