Computer vision and machine learning can be used to automate various tasks in cancer diagnostic and detection. If an attacker can manipulate the automated processing, the results can be devastating and in the worst case lead to wrong diagnosis and treatment. In this research, the goal is to demonstrate the use of one-pixel attacks in a real-life scenario with a real pathology dataset, TUPAC16, which consists of digitized whole-slide images. We attack against the IBM CODAIT's MAX breast cancer detector using adversarial images. These adversarial examples are found using differential evolution to perform the one-pixel modification to the images in the dataset. The results indicate that a minor one-pixel modification of a whole slide image under analysis can affect the diagnosis by reversing the automatic diagnosis result. The attack poses a threat from the cyber security perspective: the one-pixel method can be used as an attack vector by a motivated attacker.
翻译:计算机视觉和机器学习可以用来使癌症诊断和检测中的各种任务自动化。 如果攻击者能够操纵自动处理, 其结果可能是毁灭性的, 最坏的情况是导致诊断和治疗错误。 在这项研究中, 目标是展示在现实生活中使用一个像素袭击, 并配有真实的病理数据集, TUPAC16, 由数字化的全流图像组成。 我们用对抗图像攻击IBM CDAIT的MAX乳腺癌检测器。 这些对抗性实例发现使用差异演化来对数据集中的图像进行一等素修改。 结果显示, 正在分析的整个幻灯片图像的微小一等素修改可以通过逆转自动诊断结果来影响诊断。 袭击从网络安全角度构成了一种威胁: 一等素方法可以被动机攻击者用作攻击矢量。