Given a set of inelastic material models, a microstructure, a macroscopic structural geometry, and a set of boundary conditions, one can in principle always solve the governing equations to determine the system's mechanical response. However, for large systems this procedure can quickly become computationally overwhelming, especially in three-dimensions when the microstructure is locally complex. In such settings multi-scale modeling offers a route to a more efficient model by holding out the promise of a framework with fewer degrees of freedom, which at the same time faithfully represents, up to a certain scale, the behavior of the system. In this paper, we present a methodology that produces such models for inelastic systems upon the basis of a variational scheme. The essence of the scheme is the construction of a variational statement for the free energy as well as the dissipation potential for a coarse scale model in terms of the free energy and dissipation functions of the fine scale model. From the coarse scale energy and dissipation we can then generate coarse scale material models that are computationally far more efficient than either directly solving the fine scale model or by resorting to FE-square type modeling. Moreover, the coarse scale model preserves the essential mathematical structure of the fine scale model. An essential feature for such schemes is the proper definition of the coarse scale inelastic variables. By way of concrete examples, we illustrate the needed steps to generate successful models via application to problems in classical plasticity, included are comparisons to direct numerical simulations of the microstructure to illustrate the accuracy of the proposed methodology.
翻译:暂无翻译