Research has proven that end-to-end malware detectors are vulnerable to adversarial attacks. In response, the research community has proposed defenses based on randomized and (de)randomized smoothing. However, these techniques remain susceptible to attacks that insert large adversarial payloads. To address these limitations, we propose a novel defense mechanism designed to harden end-to-end malware detectors by leveraging masking at the byte level. This mechanism operates by generating multiple masked versions of the input file, independently classifying each version, and then applying a threshold-based voting mechanism to produce the final classification. Key to this defense is a deterministic masking strategy that systematically strides a mask across the entire input file. Unlike randomized smoothing defenses, which randomly mask or delete bytes, this structured approach ensures coverage of the file over successive versions. In the best-case scenario, this strategy fully occludes the adversarial payload, effectively neutralizing its influence on the model's decision. In the worst-case scenario, it partially occludes the adversarial payload, reducing its impact on the model's predictions. By occluding the adversarial payload in one or more masked versions, this defense ensures that some input versions remain representative of the file's original intent, allowing the voting mechanism to suppress the influence of the adversarial payload. Results achieved on the EMBER and BODMAS datasets demonstrate the suitability of our defense, outperforming randomized and (de)randomized smoothing defenses against adversarial examples generated with a wide range of functionality-preserving manipulations while maintaining high accuracy on clean examples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员