Software security testing, particularly when enhanced with deep learning models, has become a powerful approach for improving software quality, enabling faster detection of known flaws in source code. However, many approaches miss post-fix latent vulnerabilities that remain even after patches typically due to incomplete fixes or overlooked issues may later lead to zero-day exploits. In this paper, we propose $HYDRA$, a $Hy$brid heuristic-guided $D$eep $R$epresentation $A$rchitecture for predicting latent zero-day vulnerabilities in patched functions that combines rule-based heuristics with deep representation learning to detect latent risky code patterns that may persist after patches. It integrates static vulnerability rules, GraphCodeBERT embeddings, and a Variational Autoencoder (VAE) to uncover anomalies often missed by symbolic or neural models alone. We evaluate HYDRA in an unsupervised setting on patched functions from three diverse real-world software projects: Chrome, Android, and ImageMagick. Our results show HYDRA predicts 13.7%, 20.6%, and 24% of functions from Chrome, Android, and ImageMagick respectively as containing latent risks, including both heuristic matches and cases without heuristic matches ($None$) that may lead to zero-day vulnerabilities. It outperforms baseline models that rely solely on regex-derived features or their combination with embeddings, uncovering truly risky code variants that largely align with known heuristic patterns. These results demonstrate HYDRA's capability to surface hidden, previously undetected risks, advancing software security validation and supporting proactive zero-day vulnerabilities discovery.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员