The first part of the article describes our approach for solution of this problem by means of Augmented Reality. The merging of the real world model and digital objects allows streamline the work with the model and speed up the whole production phase significantly. The main advantage of augmented reality is the possibility of direct manipulation with the scene using a portable digital camera. Also adding digital objects into the scene could be done using identification markers placed on the surface of the model. Therefore it is not necessary to work with special input devices and lose the contact with the real world model. Adjustments are done directly on the model. The key problem of outlined solution is the ability of identification of an object within the camera picture and its replacement with the digital object. The second part of the article is focused especially on the identification of exact position and orientation of the marker within the picture. The identification marker is generalized into the triple of points which represents a general plane in space. There is discussed the space identification of these points and the description of representation of their position and orientation be means of transformation matrix. This matrix is used for rendering of the graphical objects (e. g. in OpenGL and Direct3D).


翻译:文章第一部分描述了我们通过增强现实来解决这一问题的方法。将真实世界模型和数字天体合并,可以简化与模型的工作,并大大加快整个生产阶段。扩大现实的主要好处是有可能使用便携式数字相机直接操纵现场。还可以使用在模型表面放置的识别标记将数字天体添加到现场。因此,没有必要使用特殊输入装置,失去与真实世界模型的接触。调整是直接在模型上进行的。概述的解决方案的关键问题是能否辨别相机图片中的对象并将其替换为数字天体。文章的第二部分特别侧重于辨别图中标记的确切位置和方向。识别标记被概括为代表空间一般平面的三重点。讨论了这些点的空间识别以及表明其位置和方向的说明作为转换矩阵的手段。该矩阵用于显示图形天体(例如OpenGL和Direct3D)。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
30+阅读 · 2020年4月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
30+阅读 · 2020年4月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员