Nonnegative matrix factorization (NMF) is a standard linear dimensionality reduction technique for nonnegative data sets. In order to measure the discrepancy between the input data and the low-rank approximation, the Kullback-Leibler (KL) divergence is one of the most widely used objective function for NMF. It corresponds to the maximum likehood estimator when the underlying statistics of the observed data sample follows a Poisson distribution, and KL NMF is particularly meaningful for count data sets, such as documents or images. In this paper, we first collect important properties of the KL objective function that are essential to study the convergence of KL NMF algorithms. Second, together with reviewing existing algorithms for solving KL NMF, we propose three new algorithms that guarantee the non-increasingness of the objective function. We also provide a global convergence guarantee for one of our proposed algorithms. Finally, we conduct extensive numerical experiments to provide a comprehensive picture of the performances of the KL NMF algorithms.
翻译:非负矩阵因子化(NMF)是非负数据集的标准线性维度减少技术(NMF) 。 为了测量输入数据与低端近似值之间的差异, Kullback- Leiber(KL) 差异是NMF最广泛使用的客观功能之一。 当观测到的数据样本的基本统计数据遵循 Poisson 分布, 而 KL NMF 对文件或图像等数组数据特别有意义时, 它与最大相似性估计值相对应。 在本文中, 我们首先收集 KL 目标函数的重要属性, 这对于研究 KL NMF 算法的趋同至关重要。 第二, 在审查解决 KL NMF 算法的现有算法的同时, 我们提出了三种新的算法, 保证目标函数不增长。 我们还为我们提议的算法中的算法之一提供了全球趋同保证。 最后, 我们进行了广泛的数字实验, 以提供KL NMF 算法性的全面性图象。