An action of a group on a vector space partitions the latter into a set of orbits. We consider three natural and useful algorithmic "isomorphism" or "classification" problems, namely, orbit equality, orbit closure intersection, and orbit closure containment. These capture and relate to a variety of problems within mathematics, physics and computer science, optimization and statistics. These orbit problems extend the more basic null cone problem, whose algorithmic complexity has seen significant progress in recent years. In this paper, we initiate a study of these problems by focusing on the actions of commutative groups (namely, tori). We explain how this setting is motivated from questions in algebraic complexity, and is still rich enough to capture interesting combinatorial algorithmic problems. While the structural theory of commutative actions is well understood, no general efficient algorithms were known for the aforementioned problems. Our main results are polynomial time algorithms for all three problems. We also show how to efficiently find separating invariants for orbits, and how to compute systems of generating rational invariants for these actions (in contrast, for polynomial invariants the latter is known to be hard). Our techniques are based on a combination of fundamental results in invariant theory, linear programming, and algorithmic lattice theory.
翻译:在矢量空间分区上的一个小组的行动, 将后者分为一组轨道。 我们考虑三个自然和有用的算法“ 单子形态” 或“ 分类” 问题, 即轨道平等、 轨道封闭交叉点 和轨道封闭封隔。 这些捕获和涉及到数学、物理和计算机科学、优化和统计等各种问题。 这些轨道问题扩大了更基本的无孔现象问题, 其算法复杂性近年来已经取得重大进展。 在本文件中, 我们通过侧重于交流组( 托里) 的行动, 开始研究这些问题。 我们解释这一设置是如何从变形复杂问题中激发的, 并且仍然足够丰富, 足以捕捉到有趣的组合算法问题。 虽然对交流行动的结构理论非常了解, 但对于上述问题并不了解任何一般性的有效算法。 我们的主要结果是所有三个问题的多元时间算法。 我们还展示了如何有效地找到轨道的变异性, 以及如何为这些行动配置理性变异性系统( 对比, 相对于变异性变异性理论, 也就是基于我们基本理论的变异性理论, 也是已知的硬的。