The inference of evolutionary histories is a central problem in evolutionary biology. The analysis of a sample of phylogenetic trees can be conducted in Billera-Holmes-Vogtmann tree space, which is a CAT(0) metric space of phylogenetic trees. The globally non-positively curved (CAT(0)) property of this space enables the extension of various statistical techniques. In the problem of nonparametric density estimation, two primary methods, kernel density estimation and log-concave maximum likelihood estimation, have been proposed, yet their theoretical properties remain largely unexplored. In this paper, we address this gap by proving the consistency of these estimators in a more general setting$\unicode{x2014}$CAT(0) orthant spaces, which include BHV tree space. We extend log-concave approximation techniques to this setting and establish consistency via the continuity of the log-concave projection map. We also modify the kernel density estimator to correct boundary bias and establish uniform consistency using empirical process theory.


翻译:进化历史的推断是进化生物学中的一个核心问题。系统发育树样本的分析可在 Billera-Holmes-Vogtmann 树空间中进行,该空间是一个 CAT(0) 度量空间,用于表示系统发育树。该空间的全局非正曲率(CAT(0))特性使得多种统计技术得以扩展。在非参数密度估计问题中,已提出了两种主要方法:核密度估计和对数凹最大似然估计,然而它们的理论性质在很大程度上仍未得到探索。本文通过证明这些估计量在更一般的设置——CAT(0) orthant 空间(包含 BHV 树空间)中的一致性,来填补这一空白。我们将对数凹逼近技术扩展到此设置,并通过对数凹投影映射的连续性建立了一致性。我们还修正了核密度估计量以校正边界偏差,并利用经验过程理论建立了一致性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月18日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员