Person search aims to simultaneously localize and identify a query person from realistic, uncropped images, which can be regarded as the unified task of pedestrian detection and person re-identification (re-id). Most existing works employ two-stage detectors like Faster-RCNN, yielding encouraging accuracy but with high computational overhead. In this work, we present the Feature-Aligned Person Search Network (AlignPS), the first anchor-free framework to efficiently tackle this challenging task. AlignPS explicitly addresses the major challenges, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task), when accommodating an anchor-free detector for this task. More specifically, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings by following a "re-id first" principle. Such a simple design directly improves the baseline anchor-free model on CUHK-SYSU by more than 20% in mAP. Moreover, AlignPS outperforms state-of-the-art two-stage methods, with a higher speed. Code is available at https://github.com/daodaofr/AlignPS
翻译:个人搜索旨在同时定位和识别来自现实的、未标定的图像的查询人,这可以被视为行人探测和重新识别(重置)的统一任务。大多数现有工程都使用两个阶段的探测器,如“快速-RCNN”,产生令人振奋的准确性,但具有很高的计算间接费用。在这项工作中,我们展示了地物-统一个人搜索网络(AleignPS),这是有效处理这项具有挑战性的任务的第一个无锚框架。AleignPS 明确解决了主要的挑战,我们在为这项任务配置一个无锚探测器时,将这些挑战总结为不同级别(即规模、区域和任务)的不匹配问题。更具体地说,我们提议了一个统一的功能聚合模块,以便产生更具有歧视性和稳健的特性嵌入,方法是遵循“重新定位第一”原则。这种简单设计直接将CUHK-SYSU的基线无锚模型改进20%以上。此外,我们把AleignPS超越了两个阶段的状态(即规模、区域、区域和任务)方法,速度更高。代码可在 http://github./frodasign上查阅。