One of the pillars of any machine learning model is its concepts. Using software engineering, we can engineer these concepts and then develop and expand them. In this article, we present a SELM framework for Software Engineering of machine Learning Models. We then evaluate this framework through a case study. Using the SELM framework, we can improve a machine learning process efficiency and provide more accuracy in learning with less processing hardware resources and a smaller training dataset. This issue highlights the importance of an interdisciplinary approach to machine learning. Therefore, in this article, we have provided interdisciplinary teams' proposals for machine learning.
翻译:任何机器学习模型的支柱之一是其概念。 使用软件工程,我们可以设计这些概念,然后开发并扩展这些概念。 在本条中,我们提出一个SELM系统机器学习模型的软件工程框架。 然后我们通过案例研究来评估这个框架。 我们可以使用SELM框架来提高机器学习过程的效率,用较少的硬件资源和较小的培训数据集来提高学习的准确性。 这个问题突出了对机器学习采取跨学科方法的重要性。 因此,我们在本条中提供了跨学科小组的机器学习建议。