Change-point detection methods are proposed for the case of temporary failures, or transient changes, when an unexpected disorder is ultimately followed by a readjustment and return to the initial state. A base distribution of the "in-control" state changes to an "out-of-control" distribution for unknown periods of time. Likelihood based sequential and retrospective tools are proposed for the detection and estimation of each pair of change-points. The accuracy of the obtained change-point estimates is assessed. Proposed methods offer simultaneous control the familywise false alarm and false readjustment rates at the pre-chosen levels.


翻译:在出现临时故障或短暂变化的情况下,如果意外的紊乱最终导致调整并恢复到最初状态,则建议采用改变点检测方法。“失控”状态变化的基础分布为“失控”状态变化,在未知的时间段内进行“失控”分布。为检测和估计每对变更点提出了基于可能性的顺序和追溯工具。评估了获得的变更点估算的准确性。拟议方法同时控制了家庭错误的警报和预选水平的虚假调整率。

0
下载
关闭预览

相关内容

基于深度学习的行人检测方法综述
专知会员服务
68+阅读 · 2021年4月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
21+阅读 · 2020年10月11日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员