We propose a framework for discrete scientific data compression based on the tensor-train (TT) decomposition. Our approach is tailored to handle unstructured output data from discrete element method (DEM) simulations, demonstrating its effectiveness in compressing both raw (e.g. particle position and velocity) and derived (e.g. stress and strain) datasets. We show that geometry-driven "tensorization" coupled with the TT decomposition (known as quantized TT) yields a hierarchical compression scheme, achieving high compression ratios for key variables in these DEM datasets.
翻译:我们提议了一个基于高压电压分解的离散科学数据压缩框架。我们的方法是专门为处理离散元件模拟法(DEM)产生的无结构输出数据而设计的,表明其在压缩原始数据集(例如粒子位置和速度)和衍生数据集(例如压力和压力)方面的有效性。我们表明,几何驱动的“加速”加上TT分解(称为四分制TT)会产生一个等级压缩法,为这些DEM数据集中的关键变量实现高压缩比率。